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Abstract
Topological versus chemical ordering in disordered binary systems is
investigated by using the Bhatia–Thornton formalism. The moments of the
partial pair-distribution functions are considered and are related to relevant
thermodynamic and other properties of the system. The results are illustrated by
using the measured partial-pair distribution functions for the network forming
glasses ZnCl2 and GeSe2.

1. Introduction

The formalism of Bhatia and Thornton [1] offers a convenient means of investigating the
topological and chemical ordering in binary mixtures [2, 3]. In a neutron diffraction
experiment, the measured intensity can be decomposed into its contributions from the so-called
number–number, SNN(k), concentration–concentration, SCC(k), and number–concentration,
SNC(k), partial structure factors, where k is the magnitude of the scattering vector. These
Bhatia–Thornton SIJ(k) (where I, J = N, C) have a simple interpretation in the thermodynamic
(k = 0) limit, and their Fourier transforms, the partial pair-distribution functions gIJ(r),
describe (i) the sites of the scattering nuclei irrespective of the chemical species that occupy
those sites (gNN(r)), (ii) the chemical ordering (gCC(r)), and (iii) the correlation between sites
and their occupancy by a given chemical species (gNC(r)) [3]. The gIJ(r) may be obtained
directly from computer simulation studies (see e.g. [4]) and, in the case of colloidal systems,
from three-dimensional fluorescence confocal microscopy [5]. Recently, it has been found
that both the topological and chemical ordering in the network forming glasses ZnCl2 and
GeSe2 extend to large length scales, up to ≈60 Å in the case of ZnCl2 [6]. The object of this
paper is to examine the moments of the measured gIJ(r) for these systems and the nature of
the information they should reveal. For definiteness it will be assumed that expressions which
hold for the liquid phase carry over to the glassy phase.

2. Theory

In a neutron diffraction study on a binary A–X compound, the coherent scattered intensity can
be represented by the total structure factor
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F(k) = 〈b〉2[SNN(k) − 1] + cAcX(bA − bX)2[SCC(k)/cAcX − 1] + 2〈b〉(bA − bX)SNC(k)

(1)

where cα , bα represent the atomic fraction and bound coherent scattering length of chemical
speciesα respectively, and 〈b〉 = cAbA+cXbX is the average scattering length. Since F(k)+〈b〉2

is a measured intensity, and must therefore be positive or zero, the SIJ(k) must satisfy the
conditions SNN(k) � 0, SCC(k) � 0 and SNN(k)SCC(k) � [SNC(k)]2 [1]. The number–number
partial structure factor is related to the corresponding partial pair-distribution function by the
Fourier transform

SNN(k) − 1 = 4πn0

k

∫ ∞

0
dr [gNN(r) − 1]r sin(kr) (2)

where n0 is the atomic number density. Equivalent Fourier transforms relate [SCC(k)/cAcX−1]
to gCC(r) and SNC(k)/cAcX to gNC(r). In terms of the partial pair-distribution functions for
the atomic species A and X,

gNN(r) = c2
AgAA(r) + c2

XgXX(r) + 2cAcXgAX(r) (3)

gCC(r) = cAcX[gAA(r) + gXX(r) − 2gAX(r)] (4)

gNC(r) = cA[gAA(r) − gAX(r)] − cX[gXX(r) − gAX(r)]. (5)

For an ionic A–X system the imposition of overall charge neutrality implies cA ZA +cX ZX = 0,
where Zαe is the charge on an ion of type α. Charge–charge, SZZ(k), and number–charge,
SNZ(k), partial structure factors can then be defined, where SCC(k) ≡ cAcX SZZ(k) and
SNC(k) ≡ (cX/ZA)SNZ(k).

From equation (2), a series expansion of sin(kr) leads to the expression

SNN(k) − 1 = M (0)
NN + M (2)

NNk2 + M (4)
NNk4 + · · · (6)

where we define the running moments of [gNN(r) − 1] by

run M (2m)
NN (rmax) =

∫ rmax

0
dr ρ

(2m)
NN (r) (7)

and weighted pair-distribution functions by

ρ
(2m)
NN (r) = 4πn0(−1)m

(2m + 1)!
[gNN(r) − 1]r2m+2 (8)

where m = 0, 1, 2, . . .. Hence the moments M (2m)
IJ of equation (6) are obtained by

extending rmax to infinity in equation (7) and the coefficient of k2m denotes the (2m + 2)th
moment of [gNN(r) − 1]. Equivalent expressions define the running moments run M (2m)

CC (rmax)

and run M (2m)

NC (rmax) and the weighted pair-distribution functions ρ
(2m)

CC (r) and ρ
(2m)

NC (r) that
correspond to gCC(r) and gNC(r) respectively. Note that this approach does not lead to odd
powers of k that can nevertheless occur; for example, dispersion forces for which the pair-
potential decays as r−6 lead to terms proportional to k3 in equation (6) [7–9].

The SIJ(k) are readily linked with the thermodynamic properties of a binary system when
k = 0 [1], namely

SNN(0) = n0kBTκT + δ2 SCC(0) (9)

SCC(0) = kBT/(∂2G/∂c2
A)T,p,N (10)

SNC(0) = −δSCC(0) (11)

where kB, T , p, N are the Boltzmann constant, absolute temperature, pressure and total
number of particles respectively, G is the Gibbs free energy per particle, κT is the isothermal
compressibility, the dilation factor δ ≡ n0(vA − vX), and vα is the partial molar volume
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Figure 1. The weighted pair-distribution functions ρ
(0)
NN(r) = 4πn0r2[gNN(r) − 1] (solid (blue)

curve), ρ
(0)
CC(r) = 4πn0r2gCC(r) (broken (black) curve) and ρ

(0)
NC(r) = 4πn0r2gNC(r) (dotted

(red) curve) for glassy ZnCl2. The inset shows the data at larger distances on an expanded scale.

per particle of chemical species α. For a single-component system, SNN(k) describes the
structure since bA = bX in equation (1) and M (0)

NN + 1 = SNN(0) is given by equation (9)
with δ = 0. For an ionic A–X material, the Stillinger–Lovett [10] conditions give (a)
M (0)

CC = SCC(0)/cAcX − 1 = −1 such that SCC(0) = 0, M (0)
NN + 1 = SNN(0) = n0kBTκT

and M (0)

NC = SNC(0)/cAcX = 0, and (b) M (2)

CC = �2
D, where �D is the Debye screening length

�−2
D = 4πn0

kBT ε

∑
α

cα(Zαe)2, (12)

ε ≡ 4πεrε0, εr is the dimensionless relative dielectric constant and ε0 is the vacuum
permittivity. By comparison, if A and X are equally sized spherical particles of identical
molar volume and amplitude of thermal motion and if they form a random substitutional alloy
wherein there is no energy penalty in interchanging one particle for another then M (0)

CC = 0,
M (0)

NN + 1 = n0kBTκT and M (0)

NC = 0. Other analytical expressions for the moments can be
deduced using simple theories for simple model pair-potentials [8, 11].

3. Results

The gIJ(r) for glassy ZnCl2 were obtained by spline fitting and Fourier transforming the
SIJ(k) of [6] after smoothly truncating at kmax = 23.5 Å−1 by using a Lorch function
M(k) = sin(πk/kmax)/(πk/kmax) [12]. Note that the area under the r -space representation
of M(k) is unity since

∫ ∞
−∞ dr M(r) = M(k = 0) = 1. The resultant ρ

(0)
IJ (r) are shown in

figure 1. The gIJ(r) for glassy GeSe2 were obtained similarly from the SIJ(k) of [13, 14] except
that kmax = 15.9 Å−1. The running second moments, run M (0)

IJ (rmax), are shown in figure 2 and
converge at rmax = 60(2) Å for glassy ZnCl2 and at rmax = 44(1) Å for glassy GeSe2. Hence
values for M (0)

NN, M (0)

CC and M (0)

NC of −0.95, −0.98, 0.10 are obtained for ZnCl2 and −0.89, −0.90,
0.07 are obtained for GeSe2 respectively, with an estimated error of ±0.03. The measured
reciprocal space data sets can also be used to obtain the M (0)

IJ and M (2)
IJ directly by, for example,

plotting [SNN(k) − 1] versus k2 at small-k and fitting a straight line (see equation (6)). Hence
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Figure 2. The running second moments of the Bhatia–Thornton partial pair-distribution functions
as measured for glassy ZnCl2 and GeSe2.

comparable values for M (0)
NN, M (0)

CC and M (0)

NC of −0.954(6), −0.98(7), 0.09(2) are found for
ZnCl2 and −0.890(4), −0.89(3), 0.05(1) are found for GeSe2 respectively. The corresponding
values for M (2)

NN, M (2)
CC and M (2)

NC are 0.37(2), −0.1(2), 0.35(6) Å2 for ZnCl2 and 0.21(2), 0.1(1),
0.28(3) Å2 for GeSe2 respectively.

4. Discussion

4.1. The second moments M (0)
IJ

ZnCl2 is usually regarded as a prototypical ionic network forming glass, provided that ion
polarization effects are taken into account [15], whereas GeSe2 is a generic covalently bonded
network material [13, 14]. For example, GeSe2 shows typical semiconducting behaviour and
the ionicity of the A–X bond is 7% for GeSe2 as opposed to 43% for ZnCl2. Furthermore,
although the predominant structural motif in glassy GeSe2 is also the A(X1/2)4 tetrahedron,
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edge-sharing configurations are common and homopolar bonds are a characteristic feature that
enables glass formation in the Ge–Se system over a wide composition range. This viewpoint
for the interatomic interactions in ZnCl2 and GeSe2 is consistent with the measured M (0)

CC
values.

Information on the compressibility of glassy ZnCl2 does not appear to be available.
However, in the case of glassy GeSe2, longitudinal and transverse sound velocities of
vL = 2800 ms−1 and vT = 1620 ms−1 are estimated from ultrasonic experiments [16] and the
mass density ρ = 4260 kg m−3 [17]. An adiabatic compressibility κS = 5.4 × 10−11 Pa−1 is
then obtained by using κ−1

S = ρ[3v2
L − 4v2

T]/3 [18]. Also, by plotting the molar volume of
Ge–Se glasses obtained from density measurements versus cGe and taking the tangent to the
resultant curve at cGe = 1/3 [19], it is found that Ge and Se have equal partial molar volumes at
the GeSe2 composition, i.e. δ = 0. Since κT � κS [20] it follows from equations (6) and (9) that
M (0)

NN = SNN(0) − 1 � −0.993, in keeping with the neutron diffraction results. Incidentally,
the density data of [21] give partial molar volumes of vGe = 16.3(8) Å3 and vSe = 40.0(8) Å3

for the liquid phase of GeSe2 at 750 ◦C such that δ = −0.74(4).

4.2. The fourth moments M (2)
IJ

For an ionic system, M (2)

CC = �2
D where �D is given by equation (12). At frequencies

that are high relative to lattice vibrational energies but low compared with atomic excitation
frequencies, the electronic polarizability will provide the dominant contribution to the dielectric
constant. In equation (12), εr is often set to this ‘high-frequency’ electronic dielectric constant
ε∞ [8] which can usually be obtained by measuring the refractive index, n, of the medium
at optical frequencies where n2 = ε∞ [22]. For an isotropic medium or cubic lattice, the
Clausius–Mossotti relation gives

ε∞ − 1

ε∞ + 2
= 4π

3
n0

∑
α

cα Pα (13)

where Pα is the polarizability of chemical species α.
For ZnCl2, P(Zn2+) ≈ 0.74 Å3, P(Cl−) ≈ 2.96 Å3 [23] and for the glass at room

temperature n0 = 0.0359(1) Å−3 [24]. Use of equation (13) then gives n = 1.584. By
comparison, the refractive index of liquid ZnCl2 at 320 ◦C measured using light of wavelength
0.5461 µm is 1.588(1) [25] and for the crystalline solid at a wavelength of 0.5893 µm values
of n = 1.687 and 1.713 are quoted [26]. Hence �2

D is in the range 0.0050–0.0058 Å2 or
�D ≈ 0.070–0.076 Å for glassy ZnCl2. Comparable Debye screening lengths are found
for the molten alkali halides near freezing [8]. For glassy GeSe2 at room temperature,
n0 = 0.0334(1) Å−3 [17] and the refractive index measured using light of wavelength 10 µm
is 2.345 [27] such that �2

D = 0.012 Å2 or �D = 0.108 Å. The Clausius–Mossotti relation
yields n = 2.33 if P(Ge4+) = 0.60 Å3 [28] and P(Se2−) = 6.1 Å3, the latter being at the
lower end of the range of polarizabilities quoted for Se2− [26]. For both glasses, the measured
M (2)

CC and calculated �2
D values are in agreement within the experimental error, although GeSe2

is not considered to be an ionic material.

5. Conclusion

The running moments run M (0)
IJ (rmax) of the measured Bhatia–Thornton gIJ(r) for glassy ZnCl2

and GeSe2 confirm that the ordering in these materials extends to large distances of about
60(2) and 44(1) Å respectively [6]. However, the measured moments, M (2m)

IJ , are sensitive to
the details of the partial structure factors at small-k and new small-angle neutron scattering
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experiments, employing the method of isotopic substitution, are necessary to improve the
accuracy. Nevertheless, the manner in which the running moments converge may give some
insight into the structure of these materials. The general results should also prove useful for
deducing parameters such as �D directly from calculated gIJ(r) [29] and for analysing the
gIJ(r) measured for colloidal systems using confocal microscopy [5] once equations (9)–(11)
are rewritten in terms of appropriate thermodynamic functions.
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